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Abstract. We present the results of statistical analysis of the empirical floating-car data. Our investigations
are based on analyzing the time series of four basic quantities namely velocity, velocity difference, spatial
gap and the acceleration associated to some instrumented cars. We obtain the statistical characteristics,
including the mean, variance and relative variance of these time series by taking direct time averages. We
also try to identify the moving phases of the instrumented vehicle according to the statistical properties of
its velocity time series. Moreover, by exploring the two-point joint probabilities, we propose a new approach
for modelling vehicular dynamics based on the floating car data.

PACS. 45.70.Vn Granular models of complex systems; traffic flow – 05.90.+m Other topics in statis-
tical physics, thermodynamics, and nonlinear dynamical systems – 05.10.-a Computational methods in
statistical physics and nonlinear dynamics

1 Introduction

Empirical observations on spatial-temporal structure of
traffic flow have revealed inherent complexities both on
microscopic and macroscopic levels [1–12]. The early traf-
fic models were only able to reproduce only a few ba-
sic features of realistic traffic flow the most important of
which was the formation of spontaneous jams. Neverthe-
less, almost all these models (for a detailed review, re-
fer to reviews [4,5]) failed to reproduce the microscopic
organisation of traffic flow. Technically speaking, non of
these models could predict three identified phases of traffic
flow. This was mainly due to simple treatment of car-car
interactions and unrealistic implementation of accelera-
tion/deceleration. Quite recently significant endeavors has
been accelerated towards the thorough understanding of
traffic flow dynamics by introducing several improvements
to the preexisting models [13–19]. Among the recent mod-
els, only a few of them are capable of reproducing the three
phases of traffic flow the so-called free, synchronized and
wide moving jams [15–17]. Even these model can not fully
reproduce the microscopic structures of traffic flow spe-
cially in relatively congested situations. Inevitably, in or-
der to compare the microscopic single-vehicle predictions
of each model to reality, one has to know the empirical
behaviours of typical cars in different traffic states. So
far the empirical data were mainly gathered via induction
loop installed at fixed locations of the road. With the help
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of these loops we can, in principle, measure the averaged
velocity, flux, density (occupancy) at the position of the
detector. In this way one obtains local information about
the flow. Although one achieves useful information about
the flow, this scheme is inadequate to provide the neces-
sary information about the long time behaviour of indi-
vidual cars. In order to get insight into the real-life driving
behaviour of individual drivers, one should be able to have
a time record of individual cars. Principally, these types
of data can be obtained by instrumentation of a car with
lidar/radar detectors. These detectors can simultaneously
measure the velocity and the acceleration of the instru-
mented car, velocity of its leader and the spatial gap to
its leader. This floating-car data can be used to test the
validity or the development of more sophisticated mod-
els of vehicular movement. Very recently a novel approach
to modelling traffic flow based on empirical floating car
data has been introduced [20]. In this approach, the em-
pirical distribution of temporal headway has been taken
into account to develop a Langevin-type formulation for
the equations of velocity and the position of cars. It is our
major objective in this paper to report on a detailed sta-
tistical analysis of empirical floating car time series of four
basic quantities i.e., velocity , velocity difference, spatial
gap and acceleration/deceleration. On the account of this
analysis, we try to classify the driving states of the float-
ing car. This can give useful information about the traffic
state in the environment of the floating car. Besides, we
try to introduce a new approach for treating the car-car
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interaction on a more realistic grounds. The organisation
of this paper is as follows. In section one, we motivate
the problem and introduce some preliminary mathemati-
cal tools needed for our statistical analysis. Sections two
and three contain the results obtained from the empiri-
cal floating-car measurements. In section four we discuss
one and two-point distribution functions and that how
the floating car data can be implemented for making new
models and parameter calibration of existing models. Con-
clusions and summaries are given in section five.

2 Time series analysis of floating-car data

While from the viewpoint of individual drivers, the driving
strategy is deterministic, the heterogeneous behaviours of
multitude of drivers make the traffic flow appear as a com-
plex many body interacting systems. Diversity of individ-
ual drivers’ behaviour and the types of their responses
to various traffic stimuli received from their environment
such as fluctuations of their leader vehicles, hindrances,
road conditions etc together with mental effects allows us
to assume traffic flow as a random process. If we look at
the velocity record of a typical vehicle during a finite time
interval, we would certainly realize that this velocity, v(t),
is a seemingly erratic and fluctuating function of time and
its statistical properties depend on the global traffic con-
gestion around the vehicle. Similar arguments correspond
to the other single-vehicle quantities such as the spatial
gap, or headway as is often called, to the leader vehicle
g(t), the vehicle acceleration a(t) and the velocity differ-
ence ∆v(t) = vl(t)−v(t) to its leader vehicle (vl(t) denotes
the leader’s velocity). It is our objective in this paper to in-
troduce some characteristic aggregate statistical functions
which give us a better insight to the stochastic aspects of
traffic flow and enables us to establish a more realistic
modelling framework of the driving rules and strategies.
The fundamental quantity to deal with is each particle
(vehicle) velocity. Other physical quantities are derived
from the velocity. To be more explicit, let us associate
some variables (physical quantities) Xk k = 1, 2, 3 · · · ,
to each vehicle driving in a road. We label each car by a
number i and specify the kth variable related to the ith
car by the X i

k respectively. For both practical purposes
and modelling objectives, we let time elapses in discrete
steps denoted by δt = τ and specify the value of variable
X i

k at the end of n-th time step t = nτ by X i
k(n). We now

define the time average of X i
k over a real time period of

duration T time steps starting from step n = n1 until step
n = n2 = n1 + T as follows:

X i
k(n1, T ) =

1
T

n1+T∑

n=n1

X i
k(n). (1)

We should emphasize that due to non-stationary aspect of
the time series, the value of the averaged quantities will,
in general, depend on the starting time step n1. We now
proceed by considering the temporal auto and cross corre-
lations. Temporal auto-correlation function of variable X

is defined as follows:

AX(τ, n1, T ) =
1

T − τ

n1+T−τ∑

n=n1

X(n)X(n + τ). (2)

Having defined the temporal autocorrelation function, one
can introduce a normalized auto correlator as follows:

ρX(τ, T ) =
AX(τ, n1, T )− X(n1, T )X(n1 + τ, T − τ)

σX(n1, T )σX(n1 + τ, T − τ)
(3)

with σX(n1, T ) = X2(n1, T ) − X(n1, T )
2
.

It can be shown that normalized auto-correlation sat-
isfies the inequality: −1 ≤ ρX(τ, n1, T ) ≤ +1 for all τ, n1

and T . By virtue of the above argument, one can define
cross-correlation functions of variables X and Y denoted
by CX,Y (τ, n, T ) by simply replacing the second X in the
above formula with the associated Y variable. To deal in
some depth, we shall now focus on the velocity of a par-
ticular vehicle say i. In empirical measurements, time is
measured in discrete multiples of τ and the position of
each vehicle is recorded as the multiple of a space grid de-
noted by δx. The time and space discretisation induces a
discretisation for the velocity denoted by δv which is given
by δv = δx/τ . Regarding this fact, the integer-valued ve-
locity ranges from 0 to vmax = nmaxδv. By this notion,
the velocity time series gives rises to the integer-valued
velocity distribution function denoted by P i(v; δv, T ). It
is the relative frequency of the integer velocity v of the
i-th vehicle during the period [n1τ, n2τ ]. Now we consider
the joint distribution functions. For simplicity let us con-
sider the two-point function and take X1 = v and X2 = g.
In this case P i

2(v, g) is the relative frequency of time steps
(during the measurement time interval T ) at which the ve-
locity and the gap of the i-th vehicle takes the integers v, g
respectively. Note that for notational convenience, we have
not explicitly written δv and T in the argument of P i

2(v, g).
Higher N -point functions can analogously be constructed.

3 Empirical results

In this section we obtain some of the distribution func-
tions in the above sections. We recall that most of the
present data in the literature has been gathered through
loop detectors at various points of the road [11,12,21–26].
We do not intend to discuss these types of data. The read-
ers can refer to review articles and related papers in the
field [4,5,9,10,12,21–23,25,26]. There are basic differences
between floating-car data and those obtained from fixed
loop detectors. Each of these types of data give their own
useful information. Specifically, fixed detectors measure
the local properties of traffic flow, namely flow, occupancy,
average velocity etc, at certain locations of the road. How-
ever, they cannot give us illustrative information about
the individual cars behaviour unless lots of detectors are
installed which seems infeasible. On the other hand, to
gain significant insight into the vehicular dynamics, it is
salient to analyse the car-car interaction. Fixed detectors
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are inadequate and unable to provide enough information
for such vital analysis. Therefore, having floating-car data
seems unavoidable [27–29]. Recently there has been an in-
creasing attempt to gather floating vehicle date mainly in
order to calibrate the parameters needed for the modelling
of vehicular dynamics in the framework of car-following
models [20,31–34]. These are among the basic reasons
why there are couple of projects running world wide to
gather trajectory data. In this paper we intend to report
on the analysis of empirical data taken from some floating
cars. The data we have analysed have been gathered from
some equipped cars on German highways [30]. They con-
tain time series of v, ∆v, g and a. These four quantities
have been recorded at 0.1 s intervals. The leader velocity
is measured with radar while the follower velocity is mea-
sured by lidar technique. The number data in each figure
is ten times the duration of measurement. The precision
of acceleration is 0.125 m/s2. Let us begin by showing the
time series of v, ∆v, g and a. The following sets of figures
exhibit the time series of above-mentioned quantities for
different driving situations. We have analysed the statis-
tical properties of these time series by taking direct time
averaging. We have calculated average, standard deviation
and relative deviation (denoted by s) which is defined as
the standard deviation divided by average provided that
the average is non zero. Based on their statistical proper-
ties, four relatively different driving states have been iden-
tified. We call them fast (F), relatively fast (RF), slow (S)
and very slow (VS) states. The discrimination is mainly
due to the average value of the velocity and its fluctuation.
However the type of correlation/anticorrelation among the
four quantities constitute the other sources for identifying
the states. Figure 1 considers the fast driving state. Gen-
erally speaking, the relative deviations are small. We have
evaluated the temporal auto correlation of v, ∆v and g.
All of them are weakly correlated over time scales up to
10 s and anti correlated for τ greater than 10 s. As can
be seen from the graphs (and confirmed by mathematics)
there is strong anti-correlation between velocity and the
velocity difference to the leader up to 10 s. Between ve-
locity and the gap, One observes a weak short correlation
up to 3 s and a strong anti correlation between 4 s and
20 s. Between g and ∆v we observe a rather strong cor-
relation up to 20 s. Next (Fig. 2) we consider a relatively
fast driving state. The driving behaviour can be inferred
by looking at the velocity time series.

In comparison to the fast driving time series, one ob-
serves that fluctuations are enhanced. The average veloc-
ity of the car has reduced to 28 m/s. The range of velocity
is wider and includes 22 to 32 m/s. The velocity standard
deviation has notably increased to 2.56 m/s. Consequently
the velocity relative deviation has sharply increased. Con-
cerning the velocity difference, both the average, and its
standard deviation have increased. For the gap, both stan-
dard and relative deviations have increased. auto correla-
tion analysis shows that the velocity is correlated up to
18 s while ∆v and g are more correlated (up to 30 s). v and
g are correlated up to 6 s and uncorrelated after 6 s. Sim-
ilar arguments apply to the case of v and ∆v. Concerning
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Fig. 1. Single vehicle time series: from top to bottom velocity,
velocity difference, gap and acceleration for an 80-s drive in
fast driving state. Statistical properties of the time series are
as follows: v = 31.6 m/s, σv = 0.64 m/s; ∆v = 0.1 m/s,
σ∆v = 0.57 m/s; g = 44.9 m, σg = 4.15 m and finally
a = −0.076 m/s2, σa = 0.44 m/s2.

the velocity difference and the gap, they are weakly cor-
related up to 5 s and then become uncorrelated (τ > 5 s).
Figure 3 exhibits the floating car behaviour in a slower
driving state. As observed, the average velocity is further
reduced to 19 m/s. This may corresponds to moving in a
higher congested environment.
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Fig. 2. Single vehicle time series: from top to bottom velocity,
velocity difference, gap and acceleration for a 200-s drive in
a relatively fast driving state. The statistical properties are
as follows: v = 28.1 m/s, σv = 2.56 m/s; ∆v = 0.27 m/s,
σ∆v = 1.21 m/s; g = 34.5 m, σg = 11.7 m and finally those for
the acceleration: a = −0.09 m/s2, σa = 0.46.

Compared to Figure 2 velocity standard and relative
deviations have notably reduced. However the velocity dif-
ference turns out to be more erratic since its standard
deviation has increased in comparison to Figure 2. Fur-
thermore, the gap’s fluctuations is suppressed. Besides the
value of the average velocity, a distinctive feature to the
time series of Figure 2 is the reduction of the velocity
standard deviation. This may be related to a high degree
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Fig. 3. Single vehicle time series: from top to bottom ve-
locity, velocity difference, gap and acceleration for an 30-s
drive in a slow driving state. The statistical properties are
as follows: v = 19.2 m/s, σv = 0.28 m/s; ∆v = −0.13 m/s,
σ∆v = 0.27 m/s; g = 29 m, σg = 1.5 m and finally
a = −0.07 m/s2, σa = 0.15 m/s2.

of synchronization of the vehicle’s velocity to its leader’s
velocity. Since the driving interval is not long enough, the
auto and cross correlations do not give rise to meaningful
results. The next set of figures (Fig. 4) exhibits the float-
ing car behaviour in a very much slow driving situation.

Although the average velocity is very small, the veloc-
ity standard deviation is relatively very large leading to
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Fig. 4. Single vehicle time series: from top to bottom velocity,
velocity difference, gap and acceleration for an 400-s drive in a
very slow driving state. The statistical properties are as follows:
v = 3.7 m/s, σv = 2.5 m/s; ∆v = 0.06 m/s, σ∆v = 0.8 m/s;
g = 7.8 m, σg = 4.1 m and finally a = −0.03 m/s2, σa =
0.44m/s2.

a large velocity relative deviation. In comparison to Fig-
ure 3, the velocity standard deviation has a considerable
larger value. Concerning velocity difference, the average
value is nearly zero but its standard deviation is larger
than the value in Figure 3. Finally while the average gap
has decreased to eight metres, the gap standard deviation
is relatively high. The very slow state has the highest gap
relative deviation among the times series discussed so far.

Table 1. Statistical properties of different drivingstates.

traffic state → F RF S VS
v (m/s) 31.6 28 19 3.7
σv (m/s) 0.64 2.56 0.28 0.8

∆v (m/s) 0.1 0.27 −0.13 0.06
σ∆v (m/s) 0.57 1.21 0.27 0.8

g (m) 45 34 29 8
σg (m/s) 4 11 1.5 4

v and g are correlated up to 20 s. In sharp contrast, ∆v
is correlated only over short time scales up to 3–4 s. Con-
cerning the cross correlations, there is correlation between
v and g up to 100 s. v and ∆v are nearly uncorrelated.
Between ∆v and g one observes a fluctuating cross cor-
relation between negative and positive values. We have
summarized the statistical properties of the above time
series denoted by fast (F), relatively fast (RF), slow (S)
and very slow(VS) in the following tables.

Before closing this section, it would be illustrative to
to clarify some points about the different driving states
introduced above. The above classification can only be re-
garded as a preliminary naive one. While the average ve-
locity serves to distinguish these states, there exists some-
what a degree of arbitrariness hence it is by no means
a decisive criterion for driving state discrimination. Al-
though we have tried to imply other statistical properties,
such as correlation functions, our classification is not yet a
rigorous one. Deeper analysis of further floating-car data
that include driving behaviours in all the traffic situations
will shed more lights upon this problem.

4 Distribution functions

We next derive the corresponding distribution functions
from the above time series as explained in the preced-
ing sections. In Figures 5–7 the related one-point distri-
bution functions P (v), P (g) and P (∆v) are obtained. In
obtaining the following distributions, the value of grids
are as follows: velocity grid = 1 m/s, velocity differ-
ence grid = 0.25 m/s, gap grid = 1 m and accelera-
tion/deceleration grid = 0.1 m/s2. The number of data
is 800 (F), 2000 (RF), 300 (S) and 4000 (VS) respectively.
The number of data points in each bin can simply be eval-
uated by multiplying the bin’s height at the data number
of the corresponding driving state.

One can observe that in RF and VS states, the veloc-
ity distribution P (v) is wide while it is localised in F and
S states. For P (∆v) this kind of behaviour is more or less
the same. When coming to P (g), the localized character is
notably reduced in F state. In the RF state, except accel-
eration, all the other distribution functions widen (com-
pared to free flow) which reflects the amplification of fluc-
tuations. It should be noted that if we change the grid,
the range of the distribution will remain unchanged while
the form may undergo changes. By looking at the S and
RF states, one infers a distinctive feature between them.
In the latter, the distributions cover the narrow region of
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Fig. 5. Single vehicle velocity distribution functions P (v) in
different driving states. From top to bottom: F, RF, S and VS
driving states.

their domain. This is due to the suppression of fluctua-
tions and could be related to the synchronization of the
vehicle’s velocity. Finally in the distribution correspond-
ing to the very slow state all P (v), P (∆v) and P (a) are
widen. We have compared our graph to some of those ob-
tained in fixed detectors. Our gap distribution P (g) in VS
state resembles the gap distribution function in congested
traffic situation [12].
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Fig. 6. Single vehicle velocity difference P (∆v) distribution
functions in different driving states. From top to bottom: F,
RF, S and VS driving states.

4.1 Two point distribution functions

Although one point distribution functions give us use-
ful information on quantification of driving behaviours,
many important features lie beyond the one point func-
tions and one has to consider higher joint distributions. In
this section we present some two-point functions obtained
from the empirical data and will discuss their importance
for a successful modelling of vehicular dynamic at the
microscopic level. Here we show three basic two-point
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Fig. 7. Single vehicle gap P (g) distribution functions in dif-
ferent driving states. From top to bottom: F, RF, S and VS
driving states.

distribution functions, namely P2(v, g), P2(∆v, g) and
P2(v, ∆v) for the traffic states discusses so far. The grid
values are the same as in one-point functions i.e., veloc-
ity grid=1 m/s, velocity difference grid = 0.25 m/s, gap
grid = 1 m and acceleration/deceleration grid = 0.1 m/s2.
The number of data points in each bin can simply be eval-
uated by multiplying the bin’s height at the data number
of the corresponding driving state.

We shall now investigate, in some details, the char-
acteristics of these distributions. First, let us discuss
P2(v, g). From this distribution we get useful information
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Fig. 8. From top to bottom: P2(v, g), P2(∆v, g), P2(v, ∆v) for
a fast (F) drive.

which relates the velocity to the gap value. According to
the free flow graph (Fig. 8), the relative frequencies are
scattered in the 2D area. If in the two dimensional v − g
plane we mark those grids having large amplitudes in the
P2(v, g), then we can obtain insight on how the gap and
velocity are dependent on each other. The same arguments
can be applied to P2(v, ∆v) and P2(∆v, g).

In the RF driving state, one observes the degree of
dependence between velocity and gap has increased at
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more points. This can be verified by close examination
of the diagram. In fact, we notice the number of relatively
large columns are increased which consequently gives rise
to more marked points in the 2D g − v plane. This im-
plies the optimal velocity assumption can be justified (al-
though not precisely). The optimal velocity curve can be
obtained by fitting through the points in v − g plane at
which P2(v, g) has notable values. We have not plotted the
two point functions in S state due to insufficient number
of data points. Finally in the VS state, the dependence
between v and g substantially reduces. This is manifested
by looking at the distribution itself and noting the small
number of grids having notable value of P − 2(v, g). This
may limit the validity of the optimal velocity assumption
in this driving state. Nevertheless, we remark the confir-
mation of this conclusion needs analysis of further data.
Next, we discuss the characteristics of P2(∆v, g) in differ-
ent states. As can be seen by examining the high value
grids, in F and RF states, ∆v and g are dependent to
each at certain points in the 2D g−∆v plane. This is sup-
pressed in VS state. Concerning P2(v, ∆v), the diagrams
tell us that in the fast state, v and ∆v are dependent only
in a limited curve-like region of the v−∆v plane whereas,
in RF state, the dependence region appears as 2D area the
v−∆v plane. By contrast, in the VS state, the dependence
region shrinks and appears in a more restricted region of
the v − ∆v plane.

5 Summary and concluding remarks

In this paper we have analysed the floating-car data taken
from instrumented vehicles. It has been our emphasis to
describe these data on the account of time series analysis.
Our findings suggest the existence of four different driv-
ing states classified as fast, relatively fast, slow and very
slow state. The identification of these states are based on
statistical characteristics such as the times series mean,
standard deviations, temporal correlation and cross cor-
relation etc. Specifically, we have evaluated the one and
two points joint distribution functions. Their analysis has
shed light on the optimal velocity postulate. Generally
speaking, our analysis demonstrates that the degree of
validity of the optimal velocity assumption depends on
driving state. This gives a rather important hint for the
improvement of the car-following approach [33]. In fixed
detector data, the O–V curve [12] is somewhat different
to the curve obtained from instrumented vehicle. The for-
mer is obtained by putting the (v, g) points correspond-
ing to each vehicle passing the fixed detector in the 2D
v − g plane while in floating car approach, we put the
point (v, g) obtained at each time interval 0.1 s in the
2D v − g plane. Apparently the O–V curve in the opti-
mal velocity model corresponds to the latter case but we
remark that one has to average over many floating car
data corresponding to many drivers. Knowing the distri-
bution functions, allows us to develop a general frame-
work for modeling of vehicular dynamics. As explained,
the diverse types of driver reactions to stimuli received
from the traffic ahead of them gives rise to heterogeneous
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Fig. 9. From top to bottom: P2(v, g), P2(∆v, g), P2(v, ∆v) for
a relatively fast (RF) drive.

driving strategies. The manifestation of these strategies
is reflected in the non-trivial joint distribution functions
of driving quantities. This suggests that if we can mea-
sure these joint functions in different traffic situations i.e.,
free, synchronized and congested, then one can make use
of them in order to establish a realistic choice of driving
strategies by the appropriate designation of acceleration a
in terms of v, g and ∆v. Let us clarify this point. Appar-
ently we know that the car’s acceleration a is related to
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Fig. 10. From top to bottom: P2(v, g), P2(∆v, g), P2(v, ∆v)
for a very slow (VS) drive.

its velocity v, its gap g and the velocity difference ∆v but
we do not know the quantitative relationship. The subtle
point is that this relationship is not a functional form in
which a is assumed to be a function of v,g and ∆v. The
empirical data confirms the existence a multitude of accel-
eration value for fixed values of v, g and ∆v. This makes
us speak about the probability of having an acceleration
value provided the velocity, gap and the velocity differ-
ence have values v, g and ∆v respectively. The following

procedure gives us this conditional probability on a nu-
merical basis. First we evaluate the four and three point
functions P4(a, g, v, ∆v) and P3(g, v, ∆v). Then we pro-
ceed by finding the conditional probability that the car’s
acceleration is a given the velocity, gap and the velocity
difference have the values v, g and ∆v respectively. This
conditional probability is obtained as follows:

P (a|g, v, ∆v) =
P4(a, g, v, ∆v)
P3(g, v, ∆v)

. (4)

The above conditional probability can be used to model
the vehicular dynamics. Details of this approach will be
published elsewhere. Moreover, for those car-following
models which use a functional dependence of acceleration
in terms of v, g and ∆v, the above conditional form of the
dependence of a in terms of v, g and ∆v can be exploited
to derive functional form by finding the average value of
the acceleration with respect to the above probability dis-
tribution as follows:

a(g, v, ∆v) =
∑

a

aP (a|g, v, ∆v). (5)

The above procedure can easily be extended to the cases
where a is assumed to depend on more variables rather
than v, g and ∆v. Our next objective is the challenge of
finding improved vehicular dynamics which are more ad-
vantageous than the existing ones through investigation of
distribution functions. Finally, it must be mentioned that
our data is related to only a few instrumented cars. In or-
der to draw decisive and exhaustive conclusions, one has to
obtain sufficiently large data-set from a variety of drivers.
Analysis of future floating-cars data will shed more light
upon the problem.

We are deeply indebted to the Institute of Transport Research
(IVF) at German Aerospace centre (DLR) and in particular
Peter Wagner for providing us with the empirical data. The
data have been gathered by the Robert Bosch GmbH and are
available in the IVF web site [30]. Special thanks is given to
Richard W. Sorfleet for his patience in reading the manuscript.
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